
MATH36061 Convex Optimization November 9, 2017

Solutions to Part B of Problem Sheet 5

Solution (5.3) Continuing from (5.3), the dual of the linear programming formulation
has the form

minimize 〈b′,y′〉 subject to A′>y′ = c, y′ ≥ 0.

Writing y′ = (y1,y2,y3,y4,y5), where the blocks correspond to the block-rows of
A′, we can write the dual as

minimize 〈b,y4 − y5〉
subject to − (y1 + y2 + y3) = −e

− y1 + y2 +A>(y4 − y5) = 0

yi ≥ 0, 1 ≤ i ≤ 5.

Set y = y4 − y5. From the first equality and the inequalities, we get that the entries of
yi, for 1 ≤ i ≤ 3, are between 0 and 1, so that y1 − y2 have entries between −1 and 1.
This means that we have the equivalence for the second condition

A>y = y1 − y2 ⇔ ‖A>y‖∞ ≤ 1.

The whole dual optimization problem can therefore be written as

minimize 〈b,y〉
subject to ‖A>y‖∞ ≤ 1.

Note that the∞-norm that appears in the constraints is the dual norm of the 1-norm that
appears in the objective of the original problem.

Solution (5.4)

(a) Given complex numbers z1 = a + ib and z2 = c + id, we can express the real
and imaginary parts of the product z3 = z1z2 as(

re(z3)
im(z3)

)
=

(
a −b
b a

)(
c
d

)
.

In the same fashion, a system of equations Ax = b, with A and x complex, we
can be written as(

re(b)
im(b)

)
=

(
re(A) −im(A)
im(A) re(A)

)(
re(c)
im(c)

)
.

Since we know that the target vector b is real, we only need the upper half of this
system. Once this is solved, we can assemble the complex c from it.

1



MATH36061 Convex Optimization November 9, 2017

(b)+(c) The code could look something like this:

In [1]: import numpy as np
import numpy.linalg as la
import numpy.random as rnd
import numpy.fft as fft
import matplotlib.pyplot as plt
import cvxpy as cvx

In [2]: def f(x):
return 1.7*np.sin(30.*x)+0.5*np.cos(9.*x)+0.5*np.sin(6.*x)
-np.cos(11.*x)+0.2*np.sin(13.*x)

In [3]: n = 512
T = 2*np.pi/n
xx = np.linspace(0,2*np.pi-T,n)
yy = f(xx)
% matplotlib inline
plt.plot(xx,yy,linewidth=3)
plt.show()

In [4]: m = 30
p = rnd.permutation(n)
points = xx[p[:m]]
samples = f(points)
plt.plot(xx,yy,linewidth=2)
plt.plot(points,samples,’o’, color=’red’)
plt.show()

The red dots indicate the points that we see. We know nothing else about the
signal!

2



MATH36061 Convex Optimization November 9, 2017

We now show how to reconstruct the whole blue curve from the knowledge of the
red dots alone. We do this by setting up an optimization problem of the form

minimize ‖x‖1 subject to Ax = b

for suitable matrix A and vector b. How A and b are constructed is described in
the problem description. Below is the implementation.

In [5]: D = fft.ifft(np.eye(n))
rD = np.concatenate((D.real, D.imag), axis=1)
A = rD[p[:m],:]
fy = fft.fft(yy)
b = np.dot(A,np.concatenate((fy.real, fy.imag), axis=0))

In [6]: x = cvx.Variable(2*n)
constraints = [A*x == b]
obj = cvx.Minimize(cvx.norm(x,1))
prob = cvx.Problem(obj, constraints)
prob.solve()

x = np.array(x.value).transpose()[0]

In [7]: newy_im = fft.ifft(x[:n]+1j*x[n:])
newy = newy_im.real
print la.norm(newy-yy,1)

plt.subplot(2,1,1)
plt.plot(xx,yy,linewidth=3)
plt.subplot(2,1,2)
plt.plot(xx,newy,linewidth=3)
plt.show()

The error obtained is of order 10−7. Now the interesting question is: how much
undersampling can we get away with? To find out, we can repeat the previous
experiment with values of m between 1 and 512 and find out where the method

3



MATH36061 Convex Optimization November 9, 2017

starts working. Obviously sampling only one point will not work (not enough
information), and sampling all 512 points will work (we have all the information).
As we say, 30 points is already sufficient, but can we do with less?

4


